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Fingerprint Recognition Using
Model-Based Density Map

Dingrui Wan and Jie Zhou, Senior Member, IEEE

Abstract—Utilizing more information other than minutiae is
much helpful for large-scale fingerprint recognition applications.
In this paper, we proposed a polynomial model to approximate
the density map of fingerprints and used the model’s parameters
as a novel kind of feature for fingerprint representation. Thus, the
density information can be utilized into the matching stage with a
low additional storage cost. A decision-level fusion scheme is fur-
ther used to combine the density map matching with conventional
minutiae-based matching and experimental results showed a much
better performance than using single minutiae-based matching.

Index Terms—Decision fusion, density map, fingerprint recogni-
tion, polynomial approximation.

I. INTRODUCTION

ECENTLY, biometric technologies have shown much

more importance in various applications. Among them,
fingerprint recognition is considered one of the most reliable
and mature technologies and has been extensively used in
personal identification. In recent years, this technology has
received increasingly more attention [1]-[3], and the perfor-
mance shows it is competent in applications on small databases;
however, it is not satisfactory for large-scale applications [4].

Most classical fingerprint recognition algorithms [1]-[3], [5],
[6] take the minutiae and the singular points, including their co-
ordinates and direction, as the distinctive features to represent
the fingerprint in the matching process. Then the minutiae fea-
ture is compared with the minutiae template; if the matching
score exceeds a predefined threshold, these two fingerprints can
be regarded as belonging to a same finger.

In [4], Jain et al. theoretically analyzed the performance’s
upper bound of minutiae-based fingerprint recognition. For ex-
ample, the estimation of the probability that an imposter pair of
fingerprints both containing 36 minutiae will match 12 minutiae
is about 6.10 x 10~8. It is also indicated that the performance
would fall drastically with noise and false minutiae detection.
In [7], Tan and Bhanu studied the individuality of the finger-
prints by adding the ridge count information between different
minutiae. Their conclusions show incorporating more discrim-
inatory information can largely strengthen this scientific basis
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for fingerprint recognition. In [8] and [9], Jain et al. have pro-
posed hybrid schemes by combining the minutiae with a novel
feature called FingerCode, which is produced by applying a set
of Gabor filters on the fingerprint. A better performance can
be obtained by using these hybrid algorithms than singly using
minutiae matching. In [10], a minutiae-descriptor has been pro-
posed and some orientation-based information from the neigh-
borhood of the minutiae points is added in the matching stage.
Some researchers also tried to find some other features directly
based on original fingerprint images. In [11], the authors pro-
posed an image-based method by using integrated wavelet and
Fourier—-Mellin invariant transform (WFMT) feature.

A novel kind of features based on density map is considered
in this paper. Density map is a set of ridge distance on each point
in the fingerprint and the ridge distance is usually defined as the
length of the segment connecting the centers of two adjacent
and parallel ridges along the line perpendicular to the ridges (see
Fig. 1 for an illustration of ridge distance). Obviously, density
map describes the ridges’ denseness or sparseness of a given
fingerprint. In [12], it has been shown an important factor for
fingerprint enhancement. In [13], a density map is proven as a
key factor in synthetic fingerprint generation. These researches
reveal that the density map plays an important role in fingerprint
representation. That is the reason why we take the density map
into account as a feature for fingerprint representation.

In this paper, we propose to use the density map as a novel
feature for the fingerprints’ representation. Since the density
maps directly computed from the fingerprints lack in robust-
ness against noise and distortion, a polynomial model is pro-
posed to approximate the coarse density map, and this model can
be regarded as an intuitive reflection of ridges’ denseness and
sparseness. Then, the model’s parameters can be saved for fur-
ther usage in fingerprint matching with a low additional storage
cost. Because the modeled density map is a global representa-
tion, which complements with the minutiae, a local represen-
tation, a better performance can be obtained by fusing the re-
sults of density map matching with conventional minutiae-based
matching.

This paper is organized as follows. Section II introduces the
model-based density map and the approximation process. In
Section III, an algorithm of fingerprint recognition combining
minutiae and density map is described. Section IV gives the ex-
perimental results to evaluate the performance of the proposed
algorithm. Section V summarizes the paper.

II. MODEL-BASED DENSITY MAP COMPUTATION

Although the density map contains rich information, it is not
suitable to directly use it in the recognition scheme due to its
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Fig. 1. [Illustration of ridge distance. The distance between points A and B is
the ridge distance at point P.

heavy storage cost. Another reason why we cannot use the den-
sity map directly is that it lacks in robustness against noise
and distortion. Furthermore, the ridge distance in the vicinity
of minutiae points and singular points usually changes sharply
[see Fig. 4(e)], so we need to reduce the redundancy between
density map and minutiae in order to utilize density map into
conventional algorithms. Due to the above reasons, we propose
to use a polynomial function with two variables for the approx-
imation of the coarse density map.

The whole computation process of model-based density map
mainly consists of the following steps: effective region esti-
mation, orientation field estimation, fingerprint enhancement,
coarse density map extraction, and weighted polynomial ap-
proximation (i.e., modeling). In Fig. 2, the flowchart of model-
based density map computation is depicted.

A. Effective Region Estimation

The fingerprint image is divided into many blocks (whose size
is 16 x 16 pixels). For each block, the variance of the gray levels
is computed. If the value exceeds the predefined threshold, this
block is regarded as an effective block. Combining all effective
blocks together, some post-processing steps like dilation and
erosion in mathematical morphology are taken based on some
simple assumptions, such as the effective region is only one con-
nected region and has no inner holes.

The effective region needs to be recorded for further usage
in the matching stage. For live-scanner applications, a simple
16-point chain code is utilized for that. First, the center of
the region is computed by averaging the x coordinate and
y coordinate of all points in the effective region. Then, 16
lines are drawn from the center with 16 different angles, i.e.,
0,7/8,7/4,---, 7 /4, and 157 /8, respectively. The intersec-
tion point of each line with the region edge is recorded in turn.
Thus, totally 32 bytes are needed for the storage of the chain
code. See Fig. 3 for an illustration.

B. Orientation Field Estimation

Orientation field is defined as the local orientation of the
ridges, which is important for fingerprint recognition. In this
paper, we use a so-called model-based method for the computa-
tion of orientation field, which is proposed by one of us in [14].
First a combination model is established for the representation
of the orientation field by considering its smoothness except for
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Fig. 2.

Flow-chart of model-based density map computation.

(b)

Fig. 3. Tllustration of effective region estimation: (a) original fingerprint; (b)
effective region computed directly; and (c) effective region represented with
16-point chain code.

several singular points, in which a polynomial model is used to
describe the orientation field globally and a point-charge model
is taken to improve the accuracy locally at each singular point.
When the coarse field is computed by using the gradient-based
algorithm, a further result can be gained by using the model for
a weighted approximation. Due to the global approximation,
this model-based orientation field estimation algorithm has a
robust performance.

C. Fingerprint Enhancement

The goal of fingerprint enhancement is to make the ridges
clearer and reduce the noise’s affect. The method used here is
quite similar with that used in [5]. Since the gray-level values
on ridges attain their local maxima along a direction normal to
the local ridge orientation. Pixels can be identified to be ridge
pixels based on this property. The fingerprint image is convolved
with a matched Gabor-like filter, which is capable of adaptively
accentuating the local maximum gray-level values along a di-
rection normal to the local ridge orientation. Then a threshold
can be easily chosen to segment the ridges adaptively [15].

D. Coarse Density Map Estimation

There are mainly two ways to compute coarse ridge distance
[16]: One is spectral approach and the other one is the spatial
approach. The former is robust to noise but also blur the ridge
density information in those regions with high curvature (be-
cause the spectral response is obtained in a specified window
and the high curvature pattern will obfuscate the two peaks in
spectral domain). The latter works quite well after a suitable
smooth post-processing, on the other hand, it has a lower com-
putation cost. So, in our study, we choose the spatial approach
to compute coarse density map.
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To estimate the density on a given point, first, we binarize the
enhanced image as the ridge map with a certain threshold, then,
draw a line passing the given point with the direction perpendic-
ular to the orientation of the given point; then detect the nearest
two central points of two neighboring ridges on the line, and the
distance between the two center points is regarded as the ridge
distance on the given point.

E. Weighted Polynomial Approximation

We want to model the original density map by a polynomial
with two variables. This bivariate polynomial can be computed
by using the Weighted Least Square (WLS) algorithm [17]. The
polynomial is written as

pla,y) =Y aga'y’ ()

i=0 j=0

where 7 is the order of the polynomial. The coefficients of the
polynomial can be obtained by minimizing the weighted square
error between the polynomial and the coarse density map com-
puted from the given fingerprint, i.e., minimizing the following
function:

T =" wy [z (zr, ) — (g, yi)] 2)

M=

k=1

where K denotes the number of samples, zx (1, yi ) is the den-
sity value at (zx,yr), and wy, is a weight factor on the point,
(zk,yr)- The selection of the weight factor will be discussed
in the next paragraph. The variables in the above optimization
problem are the parameters of the polynomial, {a;; }. They can
be computed by solving the following equations as

aJ . .

— =0, 0<2<n, 0<73<n. 3)
8aij

In order to avoid ill solution, a singular value decomposition
method (SVD) [18] is used to solve the above equations.

In our algorithm, the points with reliable densities should be
paid more attention. The variance of ridge distance computed
in a point’s neighborhood can be used to indicate how reliable
the computed density is. The lower the variance is, the more
influence the point should have in WLS algorithm. We use the
following function to normalize the weight to [0, 1] according
to the computed variance, i.e.,

2
w = exp <—%> (@)

where w denotes the normalized weight and o2 denotes the vari-
ance. Experimental results show that this function works well.
In order to reduce the computation, those points whose weight
is smaller than a certain threshold will be discarded; then, the
weighted approximation according to density variance can effi-
ciently decrease the influence of inaccurate density estimation.

As we know, a higher order polynomial can provide a better
approximation, but at the same time it will result in a much
higher cost of storage and computation. Moreover, a high-order

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

Ll

%Q:\\ X
\\\\:\
) J
)
7

)

7= -—-_-‘:\\ N

S
——
=

-

!rm"
N .?g'ﬂ it

2l

o

i
N
S

1

Fig. 4. Results of each step in model-based density map computation:
(a) original fingerprint; (b) the effective region recorded using 16-point chain
code; (c) orientation field; (d) enhanced fingerprint image; (e) coarse density
map and (f) the modeled density map. In (e) and (f), normalized gray-level
values are used to indicate the ridge distance.

polynomial will be ill behaved on numerical approximation. As
to a lower order polynomial, however, it will yield lower ap-
proximation accuracy in those regions with high curvature. As
a tradeoff, we choose four-order (i.e., n = 4) polynomials for
the global approximation. The experimental results have shown
that they perform well enough for most real fingerprints, while
preserving a small cost for storage and computation.

After approximation, 4 bytes are used to record the minimal
value and maximal value of all polynomial’s coefficients, re-
spectively. Then, only 50 bytes are needed to save 25 normal-
ized coefficients of the bivariate polynomial (i.e., each coeffi-
cient is saved in 2 bytes). As mentioned above, it needs 32 bytes
to record the effective region, so the total storage cost for den-
sity features is 90 bytes. It is much smaller than the storage cost
of the features proposed in [8]—[11] (all of which are larger than
640 bytes). Such a low storage cost guarantees the real applica-
tions of density information into match stage.

An example of model-based density map computation with
the result of each step is provided in Fig. 4.

III. FINGERPRINT MATCHING USING DENSITY MAP

In this section, we will utilize the saved density features into
the matching stage by combining them with minutiae informa-
tion. A matching scheme is proposed for density maps between
two fingerprints. Then its score is combined with the matching
score between two fingerprints’ minutiae.
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A. Density Map Matching

To compare two density maps reconstructed from saved poly-
nomial parameters, a first step is alignment of these two fin-
gerprints. It can be done in a same way as in conventional fin-
gerprint algorithms, in which the alignment is mainly based on
minutiae information [1]-[3], [5]. In our study, we choose the
Hough-transform based approach [19], [20] to finish the align-
ment due to its simplicity.

In the matching step, the correlation between two aligned
density maps, A and B, is computed as below. Let C denote
the intersection of the two effective regions after alignment, and
N is the total number of points in C'. The matching score be-
tween two density maps of two fingerprints is defined as

1
€1(A,B) = { ~ 2 (igyec @i = bijl % # 8 )
00 - 0.

A simple method is further taken to normalize the matching
score as

€(A,B) =1—exp(—€1(A,B)). (6)

If the matching score in (6) is less than a certain threshold,
we say the two density maps are matched.

B. Combination of Density Map Matching and Minutiae
Matching

Since fusion of classifiers may allow alleviation of problems
intrinsic to individual classifiers, the matching performance
could be improved by applying a combination strategy on
the output from minutiae-based matching and density map
matching. In this part, we try to integrate density map matching
and minutiae matching.

A variety of combination rules have been proposed [21], such
as product rule, sum rule, max rule, min rule, median rule, and
majority voting rule. Jain et al. [8], [22], [23] have shown that
matching accuracy can be improved by combining “indepen-
dent” matchers using Neyman-Pearson rule. Since the ridge dis-
tance in the neighborhood of minutiae point always has a greater
variance, which will lead in a smaller weight in approximation,
the effects of minutiae points could be removed greatly. So, we
can regard that density map matching and minutiae matching are
nearly independent. Then, we decided to use Neyman-Pearson
rule for our task of the combination here.

Let s; and sy denote the scores from the minutiae-based
matcher and proposed modeled density map matcher, respec-
tively. Let wg denote the genuine class, while wy denote the
imposter class; then, p(s1|wg) and p(sa|we) are the genuine
class-conditional probability density functions for s; and so,
respectively. Similarly, p(s1|wr) and p(sz2|lwr) denote the
imposter’s. The error rates of two classes are defined as

{ PG(e) = fRI p(sl, 52|WG)d81d82

Pi(e) = ch p(s1, s2|lwr)dsidss Q)

where R and R; denote the distributed region of wg and wy,
respectively. Our goal is to minimize the wg’s error rate [false
rejection rate (FRR)], under a given pre-specified error rate
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[false acceptance rate (FAR)], i.e., g = Pr(e). To do that, we
define the fusion score s(s1, s2) for s1 and s9 as

p(s1, s2lwa)
P(Sl; 82|w1)

®)

s(s1,82) =
According to the Neyman-pearson rule for a given (s?, s9),
the classification rule is as follows:

0 .0 wg, ifs (s%sg) > A
(51, 52) € {wh otherwise ©)

where A is the threshold to minimize FRR under a given FAR.

Under the assumption that s; and s» are statistically inde-
pendent, the probability density functions p(si, s2|wg) and
p(81, $2|wr) can be calculated as

{P(Sh s2|lwe) = p(s1|lwa)p(s2|we)

pls,salwr) = p(s1lwr)p(sslwr). (10

Then, the key point here is to estimate the probability density
functions, i.e., p(s1|wa), p(s2|lwa), p(s1|wr), and p(s2|wr). We
tackle this problem by using a Parzen density estimation method
on a training set (see [23]). The estimated probability density
functions can be saved for global usage.

The ridge density feature might be influenced by elastic
distortion and different pressure. But a small distortion cannot
produce an evident affection to the matching score between
two fingerprints belonging to a same identity, mainly due to
the continuity of the density model and matching scheme.
Since the proposed density-based matching method is based
on minutiae alignment, it may fail to match two fingerprints
from a same identity under a large distortion, which is similar
with the performance of the minutiae-based matching method.
Then it cannot result in additional error by adding density
information into the matching stage. The experiments also
illustrate the above conclusions, and the results will be listed
in the next section.

IV. EXPERIMENTAL RESULTS

Our experiments are conducted on three databases, including
the THU database of our lab and two public domain collections
FVC2002 DB1 and DB2 [24].

The THU database consists of 6616 fingerprint impres-
sions selected from, which are captured with live-scanners
(image size = 320 x 512). All these fingerprints are from
827 different fingers, and eight fingerprints per finger. These
fingerprint images have different sizes and vary in different
qualities. In them, more than 40% of these images are suffering
the affection from creases, scars and smudges in the ridges
or dryness and blurs of the fingers. The database is randomly
divided into two parts: one is used as the training set for the
combination scheme, which contains 3200 (400 x 8) finger-
prints, and the other is used as the testing set, which contains
3416 (427 x 8) fingerprints.

Both DB1 and DB2 from FVC2002 contain 800 fingerprints,
i.e., 100 fingers and eight prints for each finger, respectively.
These two databases are also used for testing. The FVC2002
database has following features [24]: 1) fingerprints collected
in three sessions with at least two weeks time separating each
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Fig. 5. ROC of three schemes, modeled density map matching, minutiae-based matching and the combination scheme, respectively, on the THU testing database

(a), DBI (b), and DB2 (c), of FVC2002, respectively.

session; 2) no efforts were made to control image quality and
the sensor platens were not systematically cleaned; 3) at each
session, four impressions were acquired of each of the four fin-
gers of each volunteer; 4) during the second session, individuals
were requested to exaggerate displacement (impressions 1 and
2) and rotation (3 and 4) of the finger, not to exceed 35°; and
5) during the third session, fingers were alternatively dried (im-
pressions 1 and 2) and moistened (3 and 4).

For THU database, the number of genuine-matching pairs
is 11200(C2 x 400) and 11956(C3 x 427) for the training
set and testing set, respectively. Since the matching number is
much larger that that of genuine pairs if we match all imposter
pairs, our strategy is randomly choosing two fingerprints from
the every eight ones which come from a same finger to form a
subset, then, each imposter pair in this subset has to be tested.
So, the number of imposter matching in the training set and
testing set is 319200(C%ypxo — 400) and 363 804(C%y7y 5 —
427), respectively. For DB1 and DB2, the number of genuine-

matching pairs is 2800 and that of imposter-matching pairs is
316 800.

We test the independence of minutiae matching and density
map matching on the training set. As stated in [23], [26] a corre-
lation coefficient can be used as a measure of diversity between
a pair of matchers. A lower correlation always means a higher
independence between two matchers and a larger improvement
can be obtained by combining these two matchers. In our exper-
iments, we computed the correlation coefficient between minu-
tiae-based matching and modeled density map matching and it
15 0.28, 0.24, and 0.29 on THU database, DB1 and DB2, respec-
tively. It is much lower than the correlation coefficients reported
in [23], which are all larger than 0.50 between each of three dif-
ferent minutiae-based matching methods and FingerCode-based
matching [8]. That means modeled density map can comple-
ment with minutiae much better than FingerCode.

We compared two fingerprint recognition systems, i.e., one is
singly using minutiae information and the other is the proposed
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TABLE 1
MATCHING RATES OF TWO SYSTEMS BY USING MINUTIAE-BASED MATCHING SINGLY AND THE PROPOSED
COMBINATION METHOD, RESPECTIVELY, USING THE LEAVE-ONE-OUT STRATEGY

Number THU Testing Database DB1 (60%8 fingerprints) | DB2 (60x8 fingerprints)

of best (200x8 fingerprints)

matches | minutiae-based ours minutiae-base Ours minutiae-base ours
1 0.955 0.988 0.981 0.996 0.969 0.988
2 0.952 0.985 0.982 0.990 0.967 0.984
3 0.944 0.978 0.963 0.983 0.956 0.981
4 0.933 0.969 0.942 0.972 0.946 0.975
5 0.921 0.960 0918 0.958 0.936 0.968
6 0.910 0.949 0.880 0.934 0.908 0.949
7 0.888 0.930 0.824 0.888 0.853 0.908

algorithm. In these two systems, the information of minutiae
part is the same and the only difference lies in density informa-
tion is added in the proposed algorithm. So, the performances of
the two systems can be fairly compared by the final recognition
results.

Fig. 5 shows the receiver operating curves (ROC) plotting
FAR versus FRR of minutiae matching scheme, modeled den-
sity map matching scheme and the combination scheme, on
THU testing database, DB1 and DB2, respectively. FRR is de-
fined as the percentage of imposter matches in all genuine pairs.
FAR is defined as the percentage of genuine matches in all im-
poster pairs. From the ROC, we can see that combining the den-
sity information with minutiae matching can have a rather ex-
cited result, although the performance of singly using density
map is far from satisfying. FRR can be reduced a lot by using
the combination scheme against the minutiae-based matching
only.

Table I shows the matching rates of these two matching
schemes (i.e., using the minutiae-based matching scheme and
the combination scheme) on three subsets from THU testing
database, DB1 and DB2, respectively. The matching rate is
defined as the percentage of correct fingerprints (of the same
finger) present among the best n(n = 1,2,---,7) matches. It
shows that the matching rate can also be improved evidently by
adding density information.

By analyzing the experimental results, we find the reasons why
the performance of combination strategy is better than singly
using minutiae matching mainly lie in the following. 1) The
poor-quality part in fingerprints may result in spurious minutiae
and the spurious minutiae may give negative contribution to the
FRR. The modeled density map matching may overcome this
problem to some extend by adding some positive contribution.
2) In some cases, two minutiae sets matched well, but the
textures of the region are dissimilar. Then it will result in
a false match by singly using minutiae matching. But the
dissimilarity of texture may lead a negative matching score
of modeled density map matching which indicates they are
imposters, so the combination matching may give a right
result.

Our system is implemented on a Pentium IV 1500-Hz PC
computer. Compared with singly using minutiae matching
scheme, the computational time of the hybrid algorithm will
be a little longer. Additional computation cost for feature

extraction is about 0.19 s, and the additional matching time
(one-to-one) is less than 0.01 s. It shows a high feasibility
to utilize the density map into real applications.

V. CONCLUSION

The density map is important for fingerprint representation.
In order to utilize the information into fingerprint recognition
systems, we proposed a polynomial model to represent the den-
sity map and the model’s parameters are saved as a novel kind of
feature for the matching stage. The advantages of model-based
density map can be summarized as follows. 1) It is a novel fea-
ture to represent a kind of global character of a fingerprint. 2) Its
storage cost is small enough to guarantee its utility in real ap-
plications. 3) It can reduce the effect of sharp variation of ridge
distance, and then it is much more robust against noise. 4) There
exists little redundancy between it and minutiae representation,
so it is suitable to combine density map matching with minutiae
matching.

A fingerprint matching based on modeled density map is also
developed in this paper, which can be combined with conven-
tional minutiae matching for real applications. Experimental
results show that the performance of the proposed algorithm is
significantly better than singly using minutiae-based matching,
which means the new fingerprint representation combining
minutiae and density map provides more information.
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